玻璃纤维套管价格-河北玻璃纤维套管-中电防火套管
企业视频展播,请点击播放视频作者:宁国市中电新型材料有限公司耐高温防火套管在安装上有何区别?耐高温防火套管在安装上的区别主要源于其结构形式、材质特性以及防护需求的不同。选择合适的安装方法至关重要,直接关系到其防护效果的发挥和使用寿命。以下是主要类型及其安装关键区别点:1.编织套管(BraidedSleeving)*安装方式:这是常见的类型,安装相对简单直接。*套入式:在管线或设备组装前,或在线缆束一端可断开的情况下,直接将套管像穿袖子一样套在需要保护的物体上。这是、便捷的方法。*切割长度:需要测量所需保护的长度并切割。切割后需用高温胶带或热缩管处理端口,防止散边(尤其玻纤材质)。*尺寸匹配:内径选择是关键。必须确保套管的内径略大于被保护物体的外径(考虑线缆束的膨胀或弯曲),但又不能过大导致松垮或固定不牢。通常要求套管能轻松套入,但套入后贴合度较好。*固定:两端通常使用耐高温扎带(如不锈钢扎带)或高温胶水进行绑扎固定,确保套管不会滑动移位。在中间较长部分有时也需要间隔固定。*弯曲处处理:在管线弯曲部位,需确保套管有足够的柔韧性和长度余量,避免过度弯折导致套管变形或内部物体受压。2.缠绕式套管(Wrap-AroundSleeving)*安装方式:其特点是无需断开管线或设备,可在已安装好的线束、管道上直接缠绕安装,特别适合改造、维修或空间受限无法套入的场景。*缠绕操作:沿着被保护物体螺旋状紧密缠绕。缠绕方向通常有规定(如自锁式设计),需按产品说明操作。*搭接与锁紧:相邻圈之间需要有一定的重叠率(如50%),确保完全覆盖无缝隙。关键区别在于其锁紧机制:*自锁式:套管边缘有特殊设计的钩状或搭扣结构(通常是金属丝嵌入边缘),缠绕时相邻圈的边缘会自动钩挂锁紧。*搭扣式:配有专门的金属或耐高温塑料搭扣,缠绕到位后,需手动将搭扣压紧固定。*端部处理:同样需要处理两端,使用耐高温扎带或胶水加固,防止松散。*优势场景:在狭小空间、长距离管线、或已运行设备上加装防护时优势明显。3.陶瓷纤维套管/硬质套管(CeramicFiberSleeving/RigidConduits)*安装方式:与前两者柔性套管不同,这类套管通常硬度较高、柔韧性差,主要用于高温(如超过1000°C)或需要极强机械保护的场合(如炉膛内高温传感器引线)。*分段组装:常由多段组成,需要分段套入或拼接在被保护物体外部。接头处需特殊处理,如使用高温密封胶或耐火泥密封,防止高温气体或熔渣侵入。*支撑固定:由于其刚性或半刚性,重量较大,必须设计可靠的支撑架或固定卡箍,防止其自身重量导致下垂或移位,并承受可能的振动。固需考虑热膨胀。*密封要求:端部密封极其重要,通常需要配合使用高温密封填料函、压盖或密封组件,确保套管内部与外部高温/腐蚀环境有效隔绝。*性强:安装通常需要更的工具和技术,可能涉及焊接支架、涂抹密封材料等。安装差异总结:*可访问性:编织套管通常要求被保护物可“穿入”,缠绕式则可在原位安装。*锁紧机制:缠绕式特有的自锁或搭扣锁紧是区别于编织套管的标志。*柔性与刚性:编织和缠绕套管是柔性的,适应弯曲;陶瓷/硬质套管是刚性的,需要支撑和分段处理。*端部处理复杂度:所有类型都需要端部固定,但陶瓷/硬质套管对密封的要求。*固定方式:编织和缠绕主要依赖扎带/胶水;硬质套管依赖支架和卡箍。*安装场景:缠绕式在改造维修和空间受优势突出;硬质套管用于严苛环境。通用重要注意事项(适用于所有类型):*预处理:安装前确保被保护物体表面清洁、干燥、无油污和尖锐毛刺。*尺寸匹配:严格根据被保护物外径和温度范围选择合适内径、壁厚和材质的套管。预留热膨胀空间。*固定可靠性:使用符合温度要求的扎带、胶水或锁紧件,确保牢固不松脱。*覆盖完整性:确保需要防护的区域被完全覆盖,无部分,搭接处处理得当。*环境因素:考虑安装环境的温度、湿度、化学腐蚀、机械冲击、振动等因素,选择能耐受的套管并采取相应防护措施(如外加保护层)。*安全防护:安装人员需佩戴防护装备(手套、护目镜等),尤其处理玻纤或陶瓷纤维时。*遵循规范:严格遵守产品说明书和相关的安全安装规范。如有疑问,咨询制造商。简而言之,选择哪种耐高温防火套管,很大程度上决定了其安装方式。理解“套入”、“缠绕锁紧”和“分段支撑密封”这三种模式,就能把握住不同套管类型在安装上的本质区别。正确的安装是确保其发挥预期高温隔热、防火阻燃、防喷溅、耐磨和防腐蚀等防护功能的基础。绝缘阻燃套管的防火等级如何划分?绝缘阻燃套管的防火等级划分主要依据其阻燃性能,标准是IEC60332系列(国际电工标准),同时也会参考其他区域性标准如UL(美国)、EN(欧洲)等。划分的关键在于模拟火灾场景下,套管对火焰蔓延的抑制能力。以下是主要的等级划分方式:1.IEC60332-1:单根垂直燃烧测试(LowFlameSpread)*测试方法:将单根垂直固定的套管样品,用规定火焰(通常约1kW,火焰高度约125mm)从底部灼烧一定时间(通常30秒)。*判定标准:移开火焰后,套管上的火焰应在规定时间内(通常≤60秒)自行熄灭,且燃烧滴落物(如有)不能引燃下方的脱脂棉。炭化长度(从底部施加点向上测量)不能超过规定值(通常≤50mm)。*等级含义:这是基本的阻燃等级,表明在单根、小规模火源作用下,套管能有效阻止火焰沿其自身向上蔓延。适用于电线电缆单独敷设或低密度成束敷设的环境。2.IEC60332-3:成束垂直燃烧测试(CategoryA,B,C)*测试方法:模拟更严酷的火灾场景。将多根电线电缆(已穿入被测套管或套管本身作为试样)成束垂直固定在梯架上(金属梯或梯型试验装置)。用更大功率的喷灯(火焰高度通常为1.5米或更高)从底部灼烧规定时间(通常20或40分钟)。*等级划分(根据火焰高度、燃烧时间、试样数量/非金属材料体积):*IEC60332-3CatC(ClassC):使用较小的火焰高度(通常~1.5米),燃烧时间20分钟。要求试样上的火焰在移开喷灯后≤1小时内自行熄灭,且燃烧高度(炭化长度)不超过顶部2.5米(在标准梯架高度下)。这是成束测试中低要求。*IEC60332-3CatB(ClassB):使用更高的火焰高度(通常~2.0米),燃烧时间40分钟。要求火焰在移开喷灯后≤1.5小时内自行熄灭,燃烧高度不超过顶部2.5米。要求比CatC更严格。*IEC60332-3CatA(ClassA):使用高的火焰高度(通常~2.5米),燃烧时间40分钟。要求火焰在移开喷灯后≤1.5小时内自行熄灭,燃烧高度不超过顶部2.5米。这是成束测试中高、严格的阻燃等级。适用于电线电缆高密度成束敷设的场所,如数据中心主干线槽、高层建筑竖井、站等对防火要求极高的场所。*等级含义:这些等级表明在大规模、高密度敷设环境下,套管能有效阻止火焰在整束电线电缆中快速蔓延,为人员疏散和消防救援争取宝贵时间。其他相关标准/等级:*UL94(美国保险商实验室):虽然主要针对塑料材料本身,但套管材料也常标注UL94等级(如V-0,V-1,V-2,HB),反映材料在特定小火焰下的阻燃性。V-0是高阻燃级别(垂直测试中10秒内熄灭,无滴落引燃)。注意:UL94不等同于IEC60332-3的成束燃烧等级。*UL1581(电线、电缆和软线参考标准):包含类似IEC60332-1的垂直燃烧测试(通常称为VW-1测试),是北美市场常见的单根阻燃要求。*EN45545(欧洲轨道交通车辆材料防火):对用于轨道车辆的阻燃材料(包括套管)有更的要求(如R22/R23等级),不仅考核阻燃性,还考核烟雾密度、毒性气体释放量等。总结与应用选择:选择绝缘阻燃套管的防火等级时,需根据实际应用场景和法规要求:*普通室内布线、低密度敷设:IEC60332-1(或ULVW-1)通常足够。*中密度成束敷设、一般商业建筑:考虑IEC60332-3CatC或CatB。*高密度成束敷设、关键基础设施(数据中心主干、高层竖井、电厂、交通枢纽):必须选用IEC60332-3CatA(ClassA)等级套管,提供别的火焰蔓延抑制能力。*轨道交通等特定行业:需满足EN45545等特定行业标准。购买时务必查看产品明确标注的认证等级(如IEC60332-1,IEC60332-3CatA/B/C)以及相应的认证标志(如UL,CE,VDE等),确保其符合项目要求和当地规范。防火等级是保障电气线路安全、延缓火势蔓延的关键指标。铝箔套管的耐候性能测试方法主要包括以下步骤和关键指标:1.紫外线老化测试模拟长期日光照射环境,将样品置于紫外老化箱中,依据标准(如ASTMG154或ISO4892-3)设定辐照强度(通常0.8W/m2@340nm)和周期(500~1000小时)。测试后检查表面氧化、褪色、分层或脆化现象,氧化面积需≤5%。2.高低温循环测试采用温度冲击箱,设定温度范围(-40℃至+120℃),每个温度保持2小时,循环次数≥50次。观察套管是否出现开裂、变形或密封性能下降,膨胀系数变化应<5%。3.湿热老化测试在恒温恒湿箱(温度85℃、湿度85%RH)中持续暴露240小时,测试后评估铝箔层与基材的粘合强度(剥离力下降应<15%)及电气性能(绝缘电阻变化≤20%)。4.盐雾腐蚀测试依据GB/T10125或ASTMB117标准,在5%NaCl溶液、35℃条件下进行96小时中性盐雾试验。检查铝箔表面是否出现点蚀、白锈,腐蚀面积需≤3%。5.机械性能验证对比测试前后拉伸强度(降幅≤20%)、弯曲疲劳(500次循环无断裂)及阻燃性能(垂直燃烧等级维持V-0)。评估方法量化分析外观、物理性能和电气参数变化,结合目视检查与仪器测量(如色差仪、拉力机)。终判定需满足行业标准(如UL4703或GB/T2951.12),确保套管在户外环境下5年内性能衰减不超标。所有测试需重复3组样本以保证结果可靠性。